Quantum D-modules and Equivariant Floer Theory for Free Loop Spaces

نویسنده

  • HIROSHI IRITANI
چکیده

The objective of this paper is to clarify the relationships between quantum Dmodule and equivariant Floer theory. Equivariant Floer theory was introduced by Givental in his paper “Homological Geometry”. He conjectured that the quantum D-module of a symplectic manifold is isomorphic to the equivariant Floer cohomology for the universal cover of the free loop space. First, motivated by the work of Guest, we formulate the abstract notion of quantum D-module which generalizes the D-module defined by the small quantum cohomology algebra. By using this framework, we show that quantum D-module completely determines the small quantum products. Second, we define the equivariant Floer cohomology of toric complete intersections explicitly, using Givental’s model. This is shown to satisfy the axioms of abstract quantum D-module. Then we prove that quantum D-module and equivariant Floer cohomology are isomorphic for nef toric complete intersections. Mathematics Subject Classification 2000. Primary 53D45; Secondary 14N35, 53D40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 6 . 03 22 v 1 [ m at h . R T ] 3 J un 2 00 7 LOOP SPACES AND LANGLANDS PARAMETERS

We apply the technique of S-equivariant localization to sheaves on loop spaces in derived algebraic geometry, and obtain a fundamental link between two families of categories at the heart of geometric representation theory. Namely, we categorify the well known relationship between free loop spaces, cyclic homology and de Rham cohomology to recover the category of D-modules on a smooth stack X a...

متن کامل

Quantum D-modules and Generalized Mirror Transformations

In the previous paper [17], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum D-module after a mirror transformation when the first Chern class c1(M) of the tangent bundle is nef. In this paper, even when c1(M) is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum ...

متن کامل

Quantum Cohomology and Morse Theory on the Loop Space of Toric Varieties

On a symplectic manifold M , the quantum product defines a complex, one parameter family of flat connections called the A-model or Dubrovin connections. Let ~ denote the parameter. Associated to them is the quantum D module D/I over the Heisenberg algebra of first order differential operators on a complex torus. An element of I gives a relation in the quantum cohomology of M by taking the limit...

متن کامل

Fusion of Symmetric D-branes and Verlinde Rings

We explain how multiplicative bundle gerbes over a compact, connected and simple Lie group G lead to a certain fusion category of equivariant bundle gerbe modules given by pre-quantizable Hamiltonian LG-manifolds arising from Alekseev-Malkin-Meinrenken’s quasiHamiltonian G-spaces. The motivation comes from string theory namely, by generalising the notion of D-branes in G to allow subsets of G t...

متن کامل

Hopf Algebra Equivariant Cyclic Cohomology, K-theory and Index Formulas

For an algebra B with an action of a Hopf algebra H we establish the pairing between equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that equivariant cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004